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Simultaneous velocity and temperature measurements were made with rakes of sensors
that sliced a slightly heated turbulent wake in the spanwise direction, at different
lateral positions 150 diameters downstream of the cylinder. A pattern recognition
analysis of hotter-to-colder transitions was performed on temperature data measured
at the mean velocity half-width. The velocity data from the different ‘slices’ was then
conditionally averaged based on the identified temperature events. This procedure
yielded the topology of the average three-dimensional large-scale structure which was
visualized with iso-surfaces of negative values of the second eigenvector of [S2 +Ω2].
The results indicate that the average structure of the velocity fluctuations (using a
triple decomposition of the velocity field) is found to be a shear-aligned ring-shaped
vortex. This vortex ring has strong outward lateral velocities in its symmetry plane
which are like Grant’s mixing jets. The mixing jet region extends outside the ring-
like vortex and is bounded by two foci separated in the spanwise direction and an
upstream saddle point. The two foci correspond to what has been previously identified
in the literature as the double rollers.

The ring vortex extracts energy from the mean flow by stretching in the mixing
jet region just upstream of the ring boundary. The production of the small-scale
(incoherent) turbulence by the coherent field and one-component energy dissipation
rate occur just downstream of the saddle point within the mixing jet region. Incoherent
turbulence energy is extracted from the mean flow just outside the mixing jet region,
but within the core of the structure. These processes are highly three-dimensional
with a spanwise extent equal to the mean velocity half-width.

When a double decomposition is used, the coherent structure is found to be a
tube-shaped vortex with a spanwise extent of about 2.5l0. The double roller motions
are integral to this vortex in spite of its shape. Spatial averages of the coherent
velocity field indicate that the mixing jet region causes a deficit of mean streamwise
momentum, while the region outside the foci of the double rollers has a relatively
small excess of streamwise momentum.

1. Introduction
The importance of three-dimensional large-scale turbulence structures in fully de-

veloped turbulent flows has been known since the pioneering work of Theodorsen
(1952), Townsend (1956) and Grant (1958). Theodorsen predicted that the predomi-



304 A. Vernet, G. A. Kopp, J. A. Ferré and F. Giralt

nant structure in turbulence should be a horseshoe-like vortex while Townsend and
Grant, from an analysis of correlation measurements, inferred two dominant struc-
tures, namely double rollers and mixing jets. Flow visualization has also helped to
establish the existence of far-wake structures (e.g. Taneda 1959; Keffer 1965; Cimbala,
Nagib & Roshko 1988) although it gave little information about their topology.

The large-scale structures in far wakes have been identified with several techniques
(e.g. Payne & Lumley 1967; Mumford 1983; Antonia et al. 1987; Ferré & Giralt
1989a, b; Hayakawa & Hussain 1989; Ferré et al. 1990; Gieseke & Guezennec 1993;
Kopp, Kawall & Keffer 1995; Vernet et al. 1997). Payne & Lumley used proper
orthogonal decomposition with the correlation data of Grant to refine some details
regarding the double roller structure. Following this line of research, Mumford (1983)
used pattern recognition to identify double and single roller structures with simulta-
neous multiple sensors. Ferré & Giralt (1989a, b) enhanced the pattern recognition
technique, and on the basis of separate measurements in the horizontal (homoge-
neous) and vertical (shear) planes, they speculated on the existence of horseshoe-like
structures (Ferré et al. 1990; Giralt & Ferré 1993). By using simultaneous tempera-
ture and velocity sensors, Vernet et al. (1997) gave further evidence that Townsend’s
and Grant’s double roller and mixing jet structures are different aspects of a single
structure, probably a horseshoe-shaped structure.

Antonia et al. (1987) used events in the passive temperature field to identify
structures in a single vertical plane. In particular, they utilized five temperature
probes placed in a homogeneous (x, z) plane near the location of maximum shear and
selected events containing temperature ‘fronts’ in all five signals simultaneously. With
this technique they investigated the transfer processes pertaining to vortices occurring
in an alternating mode and found significantly different results when compared
to those in the near-wake region. Continuing along this line, Bisset, Antonia &
Browne (1990) also identified the motions in the shear (vertical) plane associated with
structures in alternating and symmetric modes. Using a kinematic model of the far
wake based on a vortex array they found that the motions in the shear plane are
consistent with a double roller structure in homogeneous (x, z) planes. Kopp et al.
(1995) also found strong evidence for horseshoe (what they called Λ-shaped) vortices
by comparing results from rapid distortion theory applied to a kinematic model of
Λ-vortices and a pattern recognition analysis of experimental data from a uniformly
distorted plane turbulent wake.

These structures exist over a wide range of Reynolds numbers, from Re ∼ 103 in the
experiments by Antonia’s group to about Re ∼ 104 in the experiments at Tarragona.
They could be expected to exist up to Re ∼ 105 since the drag coefficient remains
constant over this range.

Theodorsen (1952), Ferré et al. (1990) and Giralt & Ferré (1993) argued that
horseshoe structures are important because they maintain the correlation between the
streamwise and lateral velocity fluctuations (i.e. the Reynolds shear stress) and thus
should play an important role in the momentum transfer. They point out that, because
the wake is controlled by a single length scale due to the double roller/horseshoe
structure, a simple eddy viscosity model generally works well once the intermittency
at the edges of the wake is taken into account (Libby 1976), i.e.

−uv = vt
dU

dy
. (1)

The origin of far-wake coherent structures has been a somewhat contentious issue
with two opposing points of view, namely (i) that these structures are created by the
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linear instability of the mean velocity profile in the far wake, or (ii) that they evolve
directly from the Kármán vortices in conjunction with secondary structures, called
‘ribs’, which link adjacent Kármán vortices. The experiments of Wygnanski, Cham-
pagne & Marasli (1986) indicated that there is a lack of ‘universal’ self-preservation
and that the mean velocity profile is universal in shape only. In addition, they showed
that a linear inviscid stability analysis can predict the general form of the far-wake
structures, but that the precise details depend on the initial geometry and possibly
on the initial coherent structures. Cimbala et al. (1988) argued, however, that the
far-wake structures do not depend on the initial vortices, neither their scale nor fre-
quency, but depend rather on the instability of the mean velocity profile. In contrast,
Meiburg & Lasheras (1988) and Hayakawa & Hussain (1989) show how the far-wake
coherent structures, in the shape of a horseshoe, may evolve from the Kármán vortices
and streamwise vortices called ‘ribs’, which are believed to connect adjacent Kármán
vortices.

What all of the previous studies have in common is that they relied on two-
dimensional data to infer the existence of the three-dimensional structure and the
possible effects of such a structure on the transfer processes within the wake and
across the turbulent–non-turbulent interface. In the present work, three-dimensional
data are obtained by utilizing the temperature field in the same manner as Vernet et
al. (1997) so that the three-dimensional structure and its related transfer processes
are unambiguously identified.

The objective of this paper is to identify and visualize the average three-dimensional
large-scale structure in the far wake from simultaneous velocity and temperature
measurements and to establish its relationship with the transport of momentum and
turbulence energy. We will not deal directly with the origin of the structures. In § 2
we describe the experimental setup while in § 3 we present the identification technique
which utilizes pattern recognition on the temperature field to conditionally average
the simultaneously measured velocity field. The topology of the prototypical structure
in the velocity fluctuations, identified via the transitions from hotter-to-colder fluid
motions in the passive temperature field, is discussed in § 4. In § 5, the ‘shape’ of
the coherent structure, and whether or not it is a vortex, are discussed. The three-
dimensional topology of the turbulence production and dissipation associated with the
coherent structure is discussed in § 6. Finally, the conclusions are summarized in § 7.

2. Experimental details
Measurements in a plane turbulent cylinder wake were made in the open return

wind tunnel at Universitat Rovira i Virgili in Tarragona. This facility has a test section
60×60 cm square and 300 cm long. The diameter of the cylinder, D, was 12 mm (aspect
ratio of 50 and tunnel blockage of 2.0%) while the free-stream velocity, U0, was
9 m s−1, so that the Reynolds number was 7000. The free-stream turbulence intensity
was less than 0.2%. The cylinder, which was mounted through holes in the tunnel
walls, was fitted with an electrical resistance of 50 Ω which provided a maximum
mean temperature excess of 0.8 K at x/D = 150.

A rake of four resistance thermometers (cold wires) spanning the homogeneous Z∗-
direction in steps of 0.56l0 was positioned at the downstream location x/D = 150 and
Y ∗ = 1.0, as shown in figure 1. The spatial coordinates are normalized according to
Z∗ = z/l0, Y

∗ = y/l0 and X∗ = −U0t/l0, where y = l0 = 50 mm is the lateral location
where the mean velocity defect is half of its maximum value. The conversion of the
time coordinate to the streamwise coordinate requires the use of Taylor’s hypothesis
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Figure 1. Definition sketch.

of frozen turbulence. The far wake is well-suited to this hypothesis because of the
relatively high convection velocities of the coherent structures. For example, Antonia
et al. (1987) found a convection velocity of 0.97U0 at x/D = 420 while in the present
work a slightly lower value of 0.95U0 is used because of the closer proximity to the
cylinder. Note that the free-stream velocity is used for the conversion of time into the
streamwise coordinate throughout this paper.

A rake of six X-wires, with probes separated by 0.28l0, was placed parallel to
the cold wires. This rake, which could be moved both in the spanwise (Z ∗) and
lateral (Y ∗) directions, was located at 12 different lateral Y ∗-locations ranging from
−0.5 < Y ∗ < 2.25 and at three different spanwise Z∗-locations. One of the X-
wires was overlapped when the rake was moved in the spanwise direction, so that
on all plots (6 × 3 − 2) = 16 sensors are shown in the Z∗-direction. The X-wires
themselves were oriented in two different configurations at each location in order
to measure either the streamwise and lateral velocity components or the streamwise
and spanwise components. In total, (12 × 3 × 2) = 72 data files were obtained and
stored. Thus, (u, v) and (u, w) data were obtained at (12 × 16) = 192 points in the
(y, z)-plane at x/D = 150. This compares with the extensive measurements made by
Guezennec (1989) in a turbulent boundary layer with (13×11) = 143 points per plane
normal to the direction of flow at eight streamwise locations. In contrast, the present
measurements were made at a single streamwise location with streamwise variations
being accounted for by Taylor’s hypothesis.

The voltage signals from each anemometer were low-pass filtered at 2 kHz and
sampled at 5000 samples/s for 40 s (0.2 ms between samples). The data were stored on
optical disks. Note that no data were obtained on the other side of the wake because
previous measurements with the present technique revealed neither alternating nor
symmetric modes when the structures on one side of the wake were identified without
considering the other side. (This fact can also be observed in the results of Giralt
& Ferré 1993 in their figure 2.) Note also that 40 s provides sufficient data for
convergence of the statistics described later in the text since during this time we are
able to identify over 500 structures.

The present analysis is generally based on fluctuations from the time mean. The
streamwise, lateral and spanwise velocity fluctuations ũ, ṽ, and w̃, respectively, are
normalized with the maximum mean velocity defect (Us = 1.0 m s−1) at x/D = 150.
Thus, u∗ = ũ/Us, v

∗ = ṽ/Us and w∗ = w̃/Us. (Exceptions to this are explicitly noted
in the text.) The temperature fluctuations are normalized by the local r.m.s. value,
namely θ∗ = θ̃/θ′. In addition, U, V and W are the mean streamwise, lateral and
spanwise velocities, respectively, with U∗ = U/Us, V

∗ = V/Us and W = 0. The
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Figure 2. Isocontours of (a) the initial template depicting the hotter-to-colder temperature
transition and (b) the resulting ensemble average of 〈θ∗〉 in the (X∗, Z∗)-plane at Y ∗ = 1.0.

streamwise r.m.s. velocity at Y ∗ = 1.0 is u′0 = 0.23 m s−1 while θ′0 = 0.15 K. These
values are 0.25 and 0.13 at Y ∗ = 0, respectively. The maximum value of u′ is 0.27 m s−1

and occurs at Y ∗ = 0.6. Taylor’s integral scale is 8.1 ms (' 1.5l0).

3. Identification of the prototypical coherent structure
3.1. Decomposition and averaging techniques

There have been typically two different decompositions of the velocity field used in
conjunction with the identification of coherent structures, namely the double and
triple decompositions. In the triple decomposition, the total instantaneous velocity,
u, is the sum of the mean, U, the coherent velocity, uc, and the incoherent velocity
fluctuation, ur , such that

ui(x, y, z, t) = Ui(x, y) + uc,i(x, y, z, t) + ur,i(x, y, z, t), (2)

where the coherent velocity, uc, is the ensemble average of the difference between the
total and mean velocities, i.e. uc = 〈u − U〉 (e.g. Hussain 1983; Antonia et al. 1987).
The angular brackets indicate the ensemble average and the subscripts c and r are not
indices but signify the coherent and incoherent components. The index, i, represents
the three coordinate directions x, y and z.

In the present work we have not measured the x-dependence explicitly, but have
relied on Taylor’s hypothesis to convert our time-based measurements to spatial x.
The assumption of Taylor’s hypothesis implies that the structure does not change as
it passes the set of probes. This also means that the explicit time dependence of the
structures is not a factor if all structures included in the average are of roughly the
same ‘age’. Therefore, the total instantaneous velocity in the far region of the plane
wake is decomposed as

ui(x, y, z, t) = Ui(x, y) + uc,i(x, y, z) + ur,i(x, y, z, t). (3)

Two additional points should be noted. First, this decomposition is similar to
Reynolds’ decomposition in that the instantaneous velocity fluctuation, ũ, is equal to
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the sum of the coherent and incoherent velocities. Thus, the incoherent (also called
‘small-scale’ or ‘random’) velocity is the difference between the instantaneous velocity
fluctuation and the coherent velocity,

ur,i(x, y, z, t) = ũi(x, y, z, t)− uc,i(x, y, z). (4)

Second, this notation differs slightly from that of Hussain (1983).
In the double decomposition, the total instantaneous velocity is decomposed as

ui(x, y, z, t) = Uconv(x) + uc2,i(x, y, z) + ur,i(x, y, z, t), (5)

where Uconv is a suitably chosen convection velocity and uc2 = 〈u − Uconv〉. In plane
wakes Uconv is typically taken as a function of x, although Zhou & Antonia (1992)
point out that it is also a function of y so that vortices located away from the average
location move at a slightly different speed.

In the double decomposition, the mean shear is accounted for by the coherent
(ensemble-averaged) motions while for triple decompositions it is not. Thus, the
ensemble averages from the double and triple decompositions are not the same. They
are related, however. Presuming that ur is the same with both decompositions (this
must be true when the event selection is not based on the velocity field), then

uc2 = uc +U −Uconv. (6)

Therefore, the ensemble average from the double decomposition can be obtained from
the triple decomposition by adding the local mean and subtracting the convection
velocity from the coherent velocity.

3.2. Pattern-recognition technique

The pattern-recognition (PR) technique involves cross-correlating an initial template
a(z; t) with, in this case, the temperature data θ(x, y, z; t + τ) sampled during an
experiment. With the temperature rake fixed at x/D = 150 and Y ∗ = 1.0, θ =
θ(z; t+ τ), the cross-correlation is given by

γ(τ) =
a(z; t)θ(z; t+ τ)

a′θ′
. (7)

The overbar in this equation indicates an average over z and t, where the z-range is
the number of temperature sensors and t is the number of data points in time (which
is converted to X∗ via Taylor’s hypothesis). In the present study γ(τ) is calculated for
time lags up to τ = 40 s (i.e. for the entire data set).

A hotter-to-colder temperature transition, shown in figure 2(a), has been used as
the initial template to analyse the temperature field recorded simultaneously with the
velocity data. Values of the cross-correlation coefficient, γ(τ), larger than a threshold
level (selected here to be the 1.5 times the r.m.s. value, γ′, of the cross-correlation)
identify the occurrence of individual events similar to the temperature template.
These events are ensemble averaged with the current ensemble average being used
as the template for the next iteration. This procedure is repeated until the new
template (i.e. ensemble average) is equal to the penultimate template. The process
of iteration removes the bias that may be introduced through the selection of the
initial temperature template or pattern (see the Appendix). In the present work,
four iterations were required for convergence of the temperature pattern given in
figure 2(b). Further details regarding the PR technique can be found in Ferré &
Giralt (1989a, b) and Kopp, Ferré & Giralt (1997). Effects of the choice of template
are investigated in the Appendix where it is found that three significantly different
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temperature templates yield similar structures in the velocity field. The present hotter-
to-colder template is found to be the most suitable for the present analysis.

Following convergence of the temperature ensemble average, velocities and correla-
tions were averaged at the same (τ) locations within the recorded data files where 〈θ∗〉
was obtained. In this way, velocities in different measurement planes are conditionally
sampled based upon temperature information only, and the educed average velocity
and correlation patterns should correspond unambiguously to those for temperature.
This technique is exactly the same as that used by Vernet et al. (1997) in a single
plane.

The present technique resembles that applied by Antonia et al. (1987) in that events
occurring in the temperature field are used as a trigger to identify and ensemble
average events in the velocity field. Their conditional averaging technique was trig-
gered on large values of the first time derivative of temperature occurring simultane-
ously at several positions spaced in a homogeneous (horizontal) plane. In addition,
they required the structures to be grouped in an alternating (quasi-periodic) mode. In
the present work, the PR procedure searches for the gradients via the spatial contours
of the fluctuating temperature field in the homogeneous plane, specifically, hotter-
to-colder transitions (see figure 2b). Hotter-to-colder transitions represent turbulent–
non-turbulent flow transitions if hotter fluid is associated with ‘older’ turbulent wake
flow and colder fluid with potential or more recently entrained flow. We did not add
the additional criterion of alternating or symmetric modes because this limits the
number of structures identified and because the separation of adjacent structures is
random (see Ferré & Giralt 1989a and the Appendix) without significantly improving
the smearing problem inherent to conditional averaging techniques.

3.3. Smearing of ensemble averages

One of the problems all conditional averaging procedures suffer from is that the events
to be detected are individually different so that identification becomes arbitrary since
a threshold is required to make decisions about whether an individual pattern belongs
to the class of patterns in question. Differences in the coherent events can be of size,
intensity and/or orientation, and are certainly also due to differences in the incoherent
motions which accompany the coherent motions. This results in smearing when the
detected structures are averaged. Smearing can be minimized by using multiple sensors
and using multiple conditions in the detection procedure.

Hussain & Hayakawa (1987) point out that a single sensor cannot differentiate
between a large but weak structure and a small intense structure. The use of multiple
probes addresses this point. Four temperature sensors were used in the present detec-
tion procedure, each separated by 0.56l0. With this probe separation, it is implicitly
assumed that the structures we are attempting to identify scale with the size of the
half-wake. Thus, a temperature transition passing all four probes (as identified with
γ(τ)) indicates the presence of a large-scale temperature event. This could not be
inferred with a single sensor.

When multiple conditions are used, some knowledge of what is being identified
is required. For example, additional conditions might give explicit ranges of size,
intensity or orientation so that the variation due to each of these is minimized.
From a pattern recognition perspective, these additional constraints mean adding
subclasses of patterns within an overall class of pattern. Such conditions are generally
subjective because a threshold must be chosen. If it can be shown that the subclasses
are naturally clustered, the threshold should be irrelevant (see the discussion about
clustering in Ferré & Giralt 1989a).
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In the present work the multiple condition criterion is not met because the velocity
data are obtained in 72 different data files, each at a different location. Since the
velocities at different locations within the structure are vastly different, we can see
no rational additional condition to be placed on identification. This could be done
with data obtained in a single plane by requiring that, for example, the two foci of
the double roller both be present with only a small angle between the line joining the
foci and the z (spanwise) coordinate direction. This cannot be done with the present
data.

To investigate the effects of additional constraints, a colder-to-hotter-to-colder
template is utilized, with the results described in the Appendix. As mentioned above,
it is found that the spacing between adjacent coherent structures is random with
the result that the ensemble averaged pattern is just the hotter spot coincident with
the coherent structure described in the following sections. We have concluded that the
hotter-to-colder gradient of temperature is the best choice of template in the present
work.

3.4. Temperature ensemble averages

The ensemble average of the temperature fluctuations, 〈θ∗〉, at Y ∗ = 1.0 corresponding
to rapid hotter-to-colder temperature transitions, is shown in figure 2(b). The flow
is moving from left to right in this and the following figures and the contours were
interpolated and smoothed using a cubic spline function in Tecplot 7.0. On average,
592 temperature events were selected from the 72 data files. This accounts for about
42% of the recorded data. The standard deviation of the number of temperature
events selected is 32, while the mean and standard deviation of 〈θ∗〉max are 1.51 and
0.08, respectively. Thus, it can be concluded that figure 2(b) is representative of all the
data files and that compiling the velocity averages from these data files is reasonable.

The temperature pattern in figure 2(b) is characterized by a progressive rise in
temperature followed by a steep hotter-to-colder transition as the flow structures are
advected past the probes. Vernet et al. (1997) also found, using a rake of temperature
sensors that spanned a wider portion of the flow than for the present data, that
the hotter spot (hotter than the average temperature of the fluid at this location) is
surrounded by colder fluid motions in the spanwise direction. It is also observed that
the temperature transition also moves slightly upstream with iteration. We have no
explanation for this.

4. Topology of the prototypical coherent structure
4.1. Velocity patterns

Figure 3(a) shows (〈u∗〉, 〈w∗〉) in the (X∗, Z∗)-plane at Y ∗ = 1. It is clearly observed
in this plot with the extended rake of 16 X-wires that a double roller configuration
in the velocity field exists and that it occurs simultaneously with the hotter-to-colder
transition in the temperature field (cf. figures 2b and 3a). (Note that, for clarity, only
every third vector is shown.) Two foci are associated with the double roller structure
in this plane. This velocity pattern is similar to that determined by Vernet et al.
(1997) using the temperature field to identify the velocity patterns and by Giralt &
Ferré (1993) and Kopp et al. (1997) analysing velocity data directly at x/D = 420.
It is observed when comparing figures 2(b) and 3(a) that the hotter temperatures are
located in the vicinity of the symmetry plane of the double roller and correspond to
fluid with negative streamwise velocity fluctuations, or in other words, fluid motions
with a deficit of momentum. Colder fluid upstream (to the left in the figures) of



Structure and momentum transfer in a turbulent cylinder wake 311

0

0 1 2 3 4 5

(a)

Z*

X*

–2

1

–1

2

1

0 1 2 3 4 5

(b)

Y*

X*

2

0

Figure 3. Ensemble averages of (a) 〈u∗〉,〈w∗〉 in the (X∗, Z∗)-plane at Y ∗ = 1.0 and
(b) 〈u∗〉,〈v∗〉 in the (X∗, Y ∗)-plane at Z∗ = −0.14.

the location of the saddle point (located at X∗ = 2.4, Z∗ = −0.14) is associated
with positive streamwise velocity fluctuations, i.e. fluid motions with an excess of
momentum. Positive streamwise velocity fluctuations are also observed outside the
two foci of the double rollers in the region where Z∗ < −1 and Z∗ > 1.

Figure 3(b) shows the (〈u∗〉, 〈v∗〉) projections of the velocity fluctuation vectors in
the (X∗, Y ∗)-plane at Z∗ = −0.14. This figure is assembled from measurements made
in the 12 different (X∗, Z∗)-planes described in § 2. Again, only results from the upper
half-wake are shown because there is no regular alternating or symmetric alignment
of the coherent structures in the lower half-wake relative to the structures in the upper
half-wake (Vernet 1997), and vice versa. Antonia et al. (1987) identified structures
which were in either alternating or symmetric modes. However, Vernet (1997) found
that when identification is fixed on one side of the wake, coherent structures on the
other side appear randomly.

Figure 3(b) shows that in the vertical symmetry plane of the double roller structure
the 〈u∗〉, 〈v∗〉 velocity patterns have the same organization, a spanwise eddy, as found
by Giralt & Ferré (1993) who analysed the velocity data from the vertical plane
directly. The dominant feature of the average spanwise eddy in figure 3(b), in the
centreplane of the double roller structure, is the strong outward motions with a
relatively weak-looking circulation pattern centred at x∗ = 4.0 and y∗ = 1.6. These
motions must be Grant’s mixing jets (Vernet et al. 1997). The circulation pattern,
which has spanwise vorticity, is much weaker than that observed by Antonia et al.
(1987) due to the fact that a triple decomposition is used here (see the discussion in
Giralt & Ferré 1993, as well).

Since the velocity data are assembled from 72 separate data files it is difficult to
determine with the present data whether the double roller configuration is a real
instantaneous flow structure. This issue has been investigated by Ferre-Gine et al.
(1997) who found that the double roller vortex configuration is a real instantaneous
flow structure most of the time and is not just an artifact of the averaging procedure.
However, the strengths of the individual foci are often not equal, with one side being
much stronger than the other. Therefore, the observed symmetry comes about from
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averaging a large number of these structures. Additionally, they found that the line
joining the two foci making up the double roller may not be parallel to the spanwise
axis instantaneously. Again, the averaging process causes the symmetry although it is
emphasized that the instantaneous flow structures are similar, i.e. belong to the same
class. These instantaneous differences cause smearing of the ensemble averages, as
discussed in § 3.2.

In both figures 3(a) and 3(b) a saddle point is visible at roughly the same lateral loca-
tion as that observed by Antonia et al. (1987). Figure 3 of Bisset et al. (1990) shows how
these critical points can occur instantaneously in the velocity field. In the remainder
of the paper, when the saddle point is mentioned, the coordinate location (X∗ = 2.4,
Y ∗ = 1.0, Z∗ = −0.14) is intended. The existence of this saddle point upstream of the
structure surprised us initially because we expected that it was an ‘artifact’ of the
periodic organization specifically identified by Antonia et al. However, the vertical
plane (figure 3b) also contains an upstream vortex structure centred at approximately
X∗ = 1. This second upstream vortex structure is badly smeared. Ferré & Giralt
(1989) did an extensive analysis of the structure spacing and found that there was
little evidence for highly repetitive groupings of structures and this upstream vortex
is likely due to the occasional alignment of an upstream vortex. It seems probable
that any given upstream structure, relative to the identified ones, will be randomly
situated in both the streamwise and spanwise directions. The saddle point and this
upstream vortex are further discussed in § 4.3 since a discussion of critical points is
best done in the context of streamline patterns.

4.2. Spatially averaged coherent velocities

For coherent structures to be dynamically significant they should contribute to the
mean velocity field even when a triple decomposition is assumed and the local mean
velocity is removed from the analysis of the structures. In this subsection, the coherent
contribution to the mean field is investigated by examining spatial averages of the
coherent motions. If the coherent streamwise velocity, uc(x, y, z), defined by equation
(3), is averaged over the streamwise coordinate, x, we obtain Uc(y, z) = uc(x, y, z)
where the overbar indicates the spatial average. If Uc(y, z) is then averaged over the

spanwise coordinate, z, we obtain Uc(y). Plots of Uc(y, z) are shown in figure 4(a–d)

and Uc(y) in figure 4(e). Here Uc(y, z) has been normalized by u′0, the streamwise
r.m.s. velocity at Y ∗ = 1.

Figure 4(a–d) shows the spanwise variation of the mean velocity profile due to the
coherent motions. Between the two foci in the horizontal plane in the region bound
by approximately −1.2 < Z∗ < 1.2 at Y ∗ = 1 there is a distinct velocity defect due
primarily to the negative streamwise velocity fluctuations of the mixing jet region.
The magnitude of the peak defect is largest near the symmetry plane of the coherent
structure and is found to be less than u′0. Outside the two foci, where Z∗ < −1.2
and Z∗ > 1.2, Uc(y, z) is positive so that there is a mean velocity excess, but of
smaller magnitude than the maximum defect. Clearly, the coherent velocities make
a significant contribution to the mean velocity field instantaneously even though we
are applying a triple decomposition and the ‘true’ mean velocity was removed prior
to analysis.

Libby (1976) found that the velocity field within the turbulent bulges in wakes has
less momentum than the mean while the potential regions have greater than average
momentum. The present results are consistent with bulges located in the region with
a momentum deficit bounded by approximately −1.2 < Z ∗ < 1.2 at Y ∗ = 1, while
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Figure 4. (a–d) Profiles of Uc(y, z) at all the z∗-locations and (e) the Uc(y) profile.

the outer edges of the structure with excess of momentum, in the region Z∗ < −1.2
and Z∗ > 1.2, are consistent with the potential regions surrounding adjacent bulges.

When Uc(y, z) is averaged over the spanwise coordinate, z, to remove the spanwise

dependence and to obtain Uc(y) one would expect Uc(y) to be near zero since
approximately one-third of the flow has gone into the average and this is an analysis
of the fluctuations from the local time mean. Interestingly, there is a small defect
remaining, as observed in figure 4(e), which could be due to not including data
upstream of the saddle point where there are primarily positive streamwise velocity
fluctuations, to numerical errors in the integration over the spanwise coordinate,
and/or to smearing. Since the coherent structures occur randomly in the spanwise
direction in the far-wake region, the (total) mean velocity in plane wakes is, at any
particular streamwise location, dependent only on the lateral coordinate, y.

4.3. Streamline patterns and critical points

Critical points are locations where streamlines are indeterminate and velocities vanish.
Chong, Perry & Cantwell (1990) have classified the topology of three-dimensional
critical points. Figure 5 depicts sectional streamline patterns obtained from the vectors
(〈u∗〉 + U∗ − Uconv, 〈v∗〉) and (〈u∗〉 + U∗ − Uconv, 〈w∗〉), where Uconv = 0.95U0. These
streamlines were calculated with a built-in feature in Tecplot 7.0. Sectional streamlines
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Figure 5. Sectional streamline patterns of (a) (〈u∗〉 + U − Uconv , 〈w∗〉) in the (X∗, Z∗)-plane at

Y ∗ = 1.0, (b) (〈u∗〉 + U − Uconv, 〈v∗〉) in the (X∗, Y ∗)-plane at Z∗ = −0.14, (c) (〈v∗〉, 〈w∗〉) in the
(Y ∗, Z∗)-plane at X∗ = 2.5, and (d) a three-dimensional view of the sectional streamlines.

clearly show the foci and the saddle point in both the vertical and horizontal planes.
Figure 5(a) shows the sectional streamlines in the horizontal plane at Y ∗ = 1,
figure 5(b) shows the vertical symmetry plane at Z∗ = −0.14 and figure 5(c) shows
the (Y ∗, Z∗)-plane at X∗ = 2.5. Figure 5(d) shows these sectional streamlines in a
three-dimensional view.
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Several critical points can be observed, as discussed in § 4.1. There are two foci
associated with the double roller motions in the horizontal plane centred at approxi-
mately X∗ = 3.5 and Z∗ = ±1.1, two foci in the vertical plane at about Y ∗ = 1
and X∗ = 0.5 and 4.2, and the saddle point at (X∗ = 2.4, Y ∗ = 1.0, Z∗ = −0.14).
Figure 5(c) is a slice of the saddle point in the (Y ∗, Z∗)-plane. All of the critical points
are observed to be unstable (Kaplan 1958) because the fluid is flowing away from them.

The saddle point upstream of the main structure appears to be distorted in the
horizontal plane (see figure 5a). This is probably due to some misalignments in the
ensemble averaging because not all of the individual saddle points are perfectly
aligned with the centre of the hotter-to-colder temperature transition. As a result,
continuity is not well satisfied in this region, as discussed in § 4.4. It seems likely that
saddle points would be more susceptible to smearing than foci due to their highly
three-dimensional nature (as compared to foci, for example).

The results shown in figure 5(b) can be compared with those of Bisset et al.
(1990) noting the difference in the detection schemes applied. These authors identify
structures in either alternating or symmetric modes while in the present work we
identify structures on only a single side of the wake. Thus, for comparison purposes
only a single side of their results should be examined. Our results are similar to
their symmetric mode structures (in their figures 6 and 7). In fact, their ‘v-detection’
scheme applied to symmetric mode structures is not unlike our technique in that they
identify the saddle point between two adjacent structures. Similarly, we identify a
temperature transition which happens to be the location of this same saddle point.
Keeping in mind that their flow is from right to left, it is interesting to note that the
focus upstream of the saddle point is slightly closer towards the centreline, as can be
observed in our figure 5(b).
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The question is open as to whether the saddle point exists because of the presence
of two adjacent vortices (separated in the streamwise direction) or whether it is
a feature associated with the hotter-to-colder transition regardless of the spacing
between adjacent vortices. On balance, it seems to us that the saddle point exists
regardless of the spacing, given the strength of the inward and outward velocity
fluctuations in its immediate vicinity. Specifically, the outward fluctuations of the
upstream vortex near X∗ = 0 are weak compared to those within the main structure
at X∗ = 3. The inward velocities just upstream of the saddle (X∗ = 2) are much
stronger than those associated with the main vortex structure near X∗ = 5. Kopp et
al.’s (1995) kinematic vortex model of this type of structure shows that the inward
velocities are weaker than the outward lateral velocities due to the shape of the
structure. For this reason, it seems likely that the saddle point exists regardless of the
spacing between adjacent vortices.

Bisset et al. (1990) developed a kinematic model of the far wake using an array of
Rankine vortices with streamwise velocities having a phase difference from the lateral
velocities. With this phase difference, double roller patterns are observed in horizontal
planes at Y ∗ = 1. There are, however, significant differences in these patterns and our
prototypical coherent structure. The main difference is observed at the location of the
vortex centres in the vertical, (X∗, Y ∗)-plane. In their model, the vortex centres in the
(X∗, Y ∗)-plane occur simultaneously with saddle points in the horizontal, (X∗, Z∗)-
plane at Y ∗ = 1 (see their figure 15). In contrast, our experimental/pattern-recognition
results indicate only a deficit of streamwise momentum. Thus, their model double
rollers are half the streamwise scale of ours.

4.4. Continuity

The coherent velocity field should satisfy continuity,

∂〈u∗〉
∂X∗

+
∂〈v∗〉
∂Y ∗

+
∂〈w∗〉
∂Z∗

= 0. (8)

The divergence of the present velocity data shows that the largest absolute value of
the sum of the left-hand side of equation (8) is 0.18 and occurs near the saddle point
because the spatial configuration of this critical point is not ‘perfect’. The peak value
is of the order of the largest derivative observed in the coherent field. The mean value
is 0.0005. Generally, isocontours of the left-hand side of equation (8) are randomly
distributed. The one exception to this is in the region immediately downstream of the
saddle point where the error is relatively large over a region covering approximately
0.2l0 in the X∗- and Y ∗-directions, but l0 in the Z∗-direction. This error can be
inferred from figure 5 by examining the streamlines in the immediate vicinity of the
saddle point and realizing the large velocity gradients that occur in this region. In
general, the deviations from equation (8) obtained with the present data support the
conclusion that the measured coherent velocity field satisfies continuity.

4.5. Vorticity patterns

Figure 6 depicts contours of the coherent lateral, spanwise and streamwise vorticity
fluctuations, which are, respectively,

〈ωy〉 = (∂〈u∗〉/∂Z∗ − ∂〈w∗〉/∂X∗),
〈ωz〉 = (∂〈v∗〉/∂X∗ − ∂〈u∗〉/∂Y ∗),
〈ωx〉 = (∂〈w∗〉/∂Y ∗ − ∂〈v∗〉/∂Z∗).

 (9)
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Figure 6(a) depicts the lateral vorticity at Y ∗ = 1.0 while figure 6(c) shows the
streamwise vorticity at X∗ = 3.5. Both figures show two lobes which, together with
the spanwise vorticity distribution in figure 6(b), is consistent with an inclined double
roller structure. The vorticity magnitude is not quite equal in each lobe. Figure 6(b)
shows that there are four lobes associated with the spanwise vorticity in the vertical
symmetry plane. The highest levels occur downstream of the saddle point and, from
the location of the maxima, it is observed that the focus of the spanwise eddy (i.e. the
focus in the vertical centreplane of the structure) is located at (3.6, 1.4, −0.14). There
are also closed contours of spanwise vorticity upstream of the saddle point due to
the adjacent upstream vortex described earlier.

The spanwise vorticity, depicted in figure 6(b), is quite different to that reported by
Antonia et al. (1987) because mean vorticity is not included in this plot. The mean
vorticity in a plane wake has only a spanwise component,

Ωz =
∂V ∗

∂X∗
− ∂U∗

∂Y ∗
∼ −∂U

∗

∂Y ∗
. (10)

Three-dimensional plots of |ω| isocontours are shown in figures 7(a, b) while |ω + Ω|
is shown in figure 7(c) where |ω| = (ω2

x + ω2
y + ω2

z )
1/2 and |ω + Ω| = (ω2

x + ω2
y +

(ωz + Ωz)
2)

1/2
. Figure 7(a–c) shows three very different ‘vortices’, namely a horseshoe,

a vortex ring and a tube. These depend strongly on the iso-level shown.
Since the vorticity of the mean velocity is negative in the upper half of the wake,

adding the mean vorticity enhances the main lobe of the structure and reduces the
lobes with positive 〈ωz〉. The lateral and streamwise vorticity are also smaller relative
to 〈ωz〉 + Ωz so that the vorticity iso-surface in figure 7(c) is less three-dimensional
and is more like a tube.

Clearly the mean flow changes the ‘appearance’ of the coherent till here structure as
does the iso-level of the vorticity magnitude. The difference between the |ω| = 0.5|ω|max
and |ω| = 0.6|ω|max iso-surfaces in figure 7(a, b) is substantial: one is a vortex ring
and the other a horseshoe. Lower iso-surface levels do not show the structure clearly
as |ω| tends to fill the plot as the plotted contours approach zero. A more detailed
analysis regarding whether or not this coherent structure is a vortex, and what its
shape is, is contained in the next section.

5. Is the coherent structure a horseshoe vortex?
5.1. Definition of a vortex in turbulent shear flows

There has been much debate in the literature about what constitutes a vortex in
turbulent shear flows (see Chong et al. 1990; Jeong & Hussain 1995). Although this
problem may be somewhat academic, it is nevertheless interesting, especially since
coherent structures are now commonly viewed as vortices. The essential difficulty
of defining a vortex is identifying its boundaries when it is placed in a strain field.
There are problems with using vorticity iso-surfaces to visualize the boundaries of
vortices since vorticity is not an invariant and a threshold is needed to identify the
boundaries. In regions with high rates of strain, the threshold also needs to be very
high, perhaps hiding features of the vortex itself. Boundaries identified in this way
are then somewhat arbitrary as discussed in § 4.5 and illustrated in figure 7(a–c).

Various definitions of functions which demarcate vortices have been developed to
overcome this deficiency, such as those by Hunt, Wray & Moin (1988) and Jeong
& Hussain (1995). The definition of Hunt et al. is that an ‘eddy’ is a region with a
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positive second invariant of the velocity gradient tensor, ∂ui/∂xj , and with a pressure
minimum. Jeong & Hussain point out that there is no explicit connection between
regions with a positive second invariant and a pressure minimum.

In contrast, Jeong & Hussain (1995) define a vortex as the region where the second

eigenvector, λ2, of [S2 +Ω2] is negative, where

Sij = 1
2

(
ui,j + uj,i

)
=

1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
=

1

2

(
∂u∗ci
∂X∗j

+
∂u∗cj
∂X∗i

+
∂U∗i
∂X∗j

+
∂U∗j
∂X∗j

)
, (11)

Ωij = 1
2

(
ui,j − uj,i) =

1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
=

1

2

(
∂u∗ci
∂X∗j

− ∂u∗cj
∂X∗i

+
∂U∗i
∂X∗j

− ∂U∗j
∂X∗i

)
, (12)

and {ui} = {U∗ + 〈u∗〉, V ∗ + 〈v∗〉, 〈w∗〉}. The boundary of the vortex would be the

iso-surface where λ2 = 0.

The mean shear in the far wake, ∂U∗/∂Y ∗, presents some additional difficulties

in terms of understanding its physical significance as related to coherent structures.

On the one hand, researchers have separated the mean velocity and the turbulent

fluctuations in fully developed flows to evaluate theories such as self-preservation.

Based on this decomposition, Townsend’s (1956) and Grant’s (1958) ‘big eddies’

and double rollers were inferred from correlation measurements. Payne & Lumley’s

(1967) proper orthogonal decomposition, which is based on finding the motions which

maximize the contribution to the turbulence energy, identified a similar structure. Such

structures must be in dynamic equilibrium for self-preservation to exist. In addition,

there is experimental (e.g. Wygnanski et al. 1986) and DNS (Moser, Rogers & Ewing

1998) evidence which shows that the shape of the mean velocity profile in far wakes

is universal although there can be significant differences in the velocity and length

scales which normalize it. Experiments and DNS have also shown that the structure

of the fluctuations depends strongly on the initial conditions (e.g. Kopp & Keffer

1996; Moser et al. 1998). This raises the interesting question as to whether far-wake

structures can alter mean velocity profiles by their presence. Since the profile shape

is universal, it would appear that their role could only be to adjust the magnitude of

the normalizing length and velocity scales.
On the other hand, coherent structures are known to have convection velocities,

that is, they move in a ‘coherent’ manner which can be tracked visually. In this
case, some portion (if not all) of the mean shear must be directly associated with
the coherent structures. This makes a lot of sense in near wakes where one can
intuitively see that the Kármán vortices should contribute to the mean flow because
their vorticity is aligned with that of the mean flow. It is also interesting to note
that Bisset et al. (1990) developed a kinematic far-wake model based on an array of
vortices which successfully represented the mean defect profile (although it did not
get the three-dimensional structure quite right – see § 4.1). Thus, a strong argument
can be put forward that some of the mean shear must be associated with the coherent
structure. In addition, if the structure were convected at the local mean velocity
it would be elongated very rapidly and would not be ‘self-similar’. However, similar
structures have been observed in experimental data from different facilities in cylinder
wakes from approximately x/D ∼ 80 to 400. Therefore, it seems highly probable that
the structures must be convected at some convection velocity other than the local
mean.



3
2
0

A
.

V
ern

et,
G

.
A

.
K

o
p
p
,

J
.

A
.

F
erré
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Figure 9. Sketch of a Rankine vortex in a uniform mean shear.

5.2. The shape of the vortex

Figure 8 shows three-dimensional isocontours of λ2 for two different cases, namely,
when the mean shear is considered and when it is ignored. When the mean shear
is included, the λ2 contours should approximate the shape of the actual vortex in
the flow. When it is neglected and a triple decomposition is used, the λ2 contours
can be viewed as the ‘vortex structure of the fluctuations’. Figure 8(a) shows the
contours of λ2 equal to 5% of (−λ2)max while figure 8(b) shows the contours when
λ2 is equal to 30% of (−λ2)max with the mean gradients included in the analysis.
Here, the terms involving ∂V ∗/∂X∗, ∂V ∗/∂Y ∗ and ∂U∗/∂X∗ are approximated using
continuity and Us ∝ x−1/2, with only ∂U∗/∂Y ∗ determined experimentally. Obviously,
the magnitudes of ∂V ∗/∂X∗, ∂V ∗/∂Y ∗ and ∂U∗/∂X∗ are much smaller than ∂U∗/∂Y ∗
in the far wake. In both figures 8(a) and 8(b) the vortex has the shape of a tube.
This tube roughly spans the distance between the two foci in the spanwise direction
(−1 < Z∗ < 1 at Y ∗ = 1), and in the streamwise direction between X∗ = 2.4 and
X∗ = 5. The saddle point is not part of the vortex.

Figure 8(c, d) shows λ2 when only the coherent velocity field is considered. In this
case the 5% contour level is shaped like a ring (figure 8c) while the 30% contour level
is a horseshoe (figure 8d). One can easily see that the upstream limit of the ring is the
saddle point. The mixing jet region is partially within and partially outside the vortex
boundary. The whole vortex is clearly shear aligned. Plots of the positive iso-surfaces
of the second invariant, not shown here, also reveal the same topology.

The above results show that the mean shear affects the eigenvectors. This makes
sense. In a fully developed plane wake, λ2 > 0 everywhere when only the mean shear
is analysed. Thus, one would expect the mean shear to affect the eigenvalues of
[S2 +Ω2], especially in the region where the mean shear is largest, i.e. near Y ∗ = 1.0.
Increasing the mean shear also increases the absolute value of (−λ2)max. Because the
mean rate of strain is relatively large in the far wake, its inclusion in the analysis
causes the ‘shape’ of the vortex and the ‘structure of the fluctuations’ to be rather
different.

One of the issues that needs clarification is whether all of the mean shear should
be accounted for by the coherent structures in the far wake or whether some ‘pure’
shear remains. It should be noted that if not all the mean shear is included with the
coherent structure, then the vortex boundary becomes arbitrary, as shown with the
simple example below. If one considers a Rankine vortex placed in the (x, y)-plane
with a pure shear defined by the mean velocity field U = Sy, as shown in figure 9,
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where

u =


− 1

2
ω0y + Sy, r < a

1
2
ω0a

2 y

(x2 + y2)
+ Sy, r > a,

(13)

v =


+ 1

2
ω0x, r < a

+ 1
2
ω0a

2 x

(x2 + y2)
, r > a.

(14)

Here, the Rankine vortex has been decomposed into Cartesian coordinates with

r =
√
x2 + y2, ω0 < 0, and S > 0 as sketched. Then,

[S2 +Ω2] =

 m 0 0

0 m 0

0 0 0

 , (15)

so that λ1 = 0 and

m = λ2 = λ3 =

(
∂u

∂x

)2

+

(
∂v

∂x

)(
∂u

∂y

)

=


− 1

4
ω2

0 + 1
2
ω0S, r < a

ω0a
2

(x2 + y2)

[
ω0a

2

4(x2 + y2)
− Sx2

(x2 + y2)
+ 1

2
S

]
, r > a.

(16)

When r < a, there are two negative eigenvalues (λ2 = λ3 < 0). When r > a and
S = 0, there are no negative eigenvalues since λ2 = λ3 > 0. However, it is possible to
have two negative eigenvectors when r > a. Therefore, in the presence of mean shear,
the boundary of the Rankine vortex, as visualized by λ2, can be different from the
case with no extra shear present. For the configuration shown in figure 9 (which is
similar to, although not precisely the same, as the upper half plane of a wake), λ2 < 0
when ∣∣∣∣Sω0

(
1
2
− x2

(x2 + y2)

)∣∣∣∣ > ω2
0a

2

4(x2 + y2)
and 1

2
>

x2

(x2 + y2)
. (17)

For example, let (x, y) = (0,±2a). If there is no extra mean shear (S = 0), then
this point is not within the vortex core because the boundary is r = a. However, if
S > ω0/8, the point (0, 2a) is now part of the boundary of the vortex. Therefore, it
takes relatively little shear to significantly alter the vortex boundary.

How does this relate to the coherent structure identified in this paper? Consider
the vertical symmetry plane of the coherent structure where the gradients ∂/∂z = 0
and wc = 0. In this case, [S2 + Ω2] is described by equation (15). Clearly, ∂U∗/∂Y ∗
is not equal to a constant over the range 0 < Y ∗ < 2. However, it is maximum near
Y ∗ = 1. Our conclusion here is simply that if some significant amount of ∂U∗/∂Y ∗
is not accounted for by the coherent motions, the vortex boundary is arbitrary. At
present, there does not appear to be any rational way of splitting the mean shear
between that accounted for by the average passage of the coherent structures and
that by pure shear. Note that at the outer regions of the wake (Y ∗ = 2) and near the
centreline (Y ∗ = 0) the boundaries of the vortex, if they are located there, are not
affected because ∂U∗/∂Y ∗ ≈ 0.
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Figure 10. Ensemble average of 〈u∗〉2 × 100 in (a) the (X∗, Z∗)-plane at Y ∗ = 1.0 and
(b) the (X∗, Y ∗)-plane at Z∗ = −0.14.

6. Momentum and energy transfer processes and entrainment
6.1. Large-scale (coherent) stresses

Figure 10 shows slices of the coherent streamwise normal stress 〈u∗〉2 in the (X∗, Z∗)-
and (X∗, Y ∗)-planes, respectively. The coherent lateral normal stress 〈v∗〉2 and coherent
shear stress 〈u∗〉〈v∗〉, not shown in this paper, exhibit similar behaviour. The behaviour
of the spanwise normal stress, 〈w∗〉2, which is significantly different, is discussed by
Vernet (1997). Clearly, 〈u∗〉2 is three-dimensional with a significant magnitude over a
spatial extent of l0 in the spanwise and lateral directions. The streamwise extent of
1.5l0 is slightly larger. The region with high 〈u∗〉2 is centred in the symmetry plane
of the coherent structure at (3.2, 1.0, 0), between the saddle point and the foci, or in
other words, within the mixing jet region of the structure.

The coherent, 〈k∗〉2, and incoherent, 〈k∗2r 〉, turbulence kinetic energy

〈k∗〉2 = 1
2
(〈u∗〉2 + 〈v∗〉2 + 〈w∗〉2), (18)

〈k∗2r 〉 = 1
2
(〈u∗2〉+ 〈v∗2〉+ 〈w∗2〉)− 〈k∗〉2, (19)

are shown in figure 11. Figure 11(a, b) shows that the spatial distribution of coherent
energy is similar to the 〈u∗〉2 isocontours given in figure 10. The incoherent turbu-
lence kinetic energy, 〈k∗2r 〉, is also maximum in the mixing jet region, as shown in
figure 11(c, d). The peak value of the total kinetic energy is twice that of the coherent
value. Clearly, there is a lot of variation in the individual structures (or events) as
evidenced by the high levels of incoherent turbulence, especially in the mixing jet
region. This is examined further below, but also explains why these structures are
generally difficult to identify.

6.2. Stresses due to the incoherent (small-scale) motions

Figure 12 shows the contours of the streamwise normal stress due to the small-
scale or incoherent motions, 〈u∗2r 〉, calculated from 〈u∗2〉 − 〈u∗〉2, in the (X∗, Z∗)- and
(X∗, Y ∗)-planes. This figure shows that there is a deficit of incoherent energy in the
region around the saddle point and just upstream of it at approximately (2.4, 1.0, 0).
Thus, colder fluid is less turbulent, as expected. Peak values of 〈u∗2r 〉 are observed in
the mixing jet region downstream of the saddle point. Figure 12(b) shows that the
contours for 〈u∗2r 〉 in the vertical symmetry plane of the structure are similar to those
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Figure 11. Ensemble average of 〈k∗〉2 × 100 in (a) the (X∗, Z∗)-plane at Y ∗ = 1.0 and (b) the
(X∗, Y ∗)-plane at Z∗ = −0.14, and of 〈k∗2r 〉 × 100 in (c) the (X∗, Z∗)-plane at Y ∗ = 1.0 and
(d) the (X∗, Y ∗)-plane at Z∗ = −0.14.
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Figure 12. Ensemble average of 〈u∗2r 〉 × 100 in (a) the (X∗, Z∗)-plane at Y ∗ = 1.0 and
(b) the (X∗, Y ∗)-plane at Z∗ = −0.14.

reported by Antonia et al. (1987). In the horizontal plane, lower values are observed
outside the two foci, again in the region where there is colder fluid (Vernet et al.
1997).

It has been assumed that the small-scale motions (also called random or in-
coherent in the literature), calculated from the difference between the total and
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Figure 13. Ensemble average of the fine-scale turbulence indicator function (see text) in
(a) the (X∗, Z∗)-plane at Y ∗ = 1.0 and (b) the (X∗, Y ∗)-plane at Z∗ = −0.14.

coherent stresses, are due entirely to the small scales. As pointed out by Antonia
et al. (1987) and by Ferré et al. (1990), fully developed turbulent shear flows have
a wide degree of scatter in individual structures due not only to differences in the
smaller incoherent scales but also to differences in size, intensity and orientation
of the structures. In addition, misclassifications that occur during identification and
misalignments during averaging contribute to this scatter. Ferré et al. (1990) de-
fined and used a fine-scale turbulence indicator function and found that the stresses
due to the small-scale motions, identified in this way, exhibit more scatter in the
homogenous plane of the fully developed wake than in the vertical plane. Thus,
figure 12 must be viewed with some caution, especially figure 12(b), since the
topology of the structures is more variable in the horizontal than in the vertical
plane.

To better assess how representative 〈u∗2r 〉 is, the contours of the fine-scale turbulence
indicator function proposed by Ferré et al. (1990) are plotted in figure 13 for the
present data. The fine-scale turbulence indicator function is the envelope of the second
derivative of velocity with respect to time. The Hilbert Transform is used to find the
envelope. It should be noted that this function is biased to the higher frequencies,
which may not fully represent the behaviour of the incoherent motions. Nevertheless,
the similarity of the isocontours between figures 12 and 13 support in a qualitative
way the results for 〈u∗2r 〉 presented in figure 12.

6.3. Production and dissipation of turbulence

Hussain (1983) developed the transport equations for a triple decomposition of
the velocity field. Figures 14 and 15 depict, respectively, the contours of the shear
production of coherent energy,

〈Sc〉 = −〈u∗〉〈v∗〉∂U
∗

∂Y ∗
(20)

and shear production of the incoherent energy

〈Sr〉 = −〈u∗r v∗r 〉∂U
∗

∂Y ∗
. (21)
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Figure 14. Ensemble average of the mean shear production of coherent energy, 〈Sc〉 (see equation
(20)), in (a) the (X∗, Z∗)-plane at Y ∗ = 1.0 and (b) the (X∗, Y ∗)-plane at Z∗ = −0.14. The contour
levels are multiplied by 100.
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Figure 15. Ensemble average of the mean shear production of incoherent energy, 〈Sr〉 (see equation
(21)), in (a) the (X∗, Z∗)-plane at Y ∗ = 1.0 and (b) the (X∗, Y ∗)-plane at Z∗ = −0.14. The contour
levels are multiplied by 100.

The shear production of coherent energy by the mean velocity field is largest between
the two foci in the horizontal plane of the structure (figure 14a) and in the structure’s
vertical symmetry plane at Y ∗ = 1.0 slightly below the focus in the vertical plane.
This region of maximum production is the mixing jet region of the structure. The
lateral, spanwise and streamwise extent of this production term are all of the order
of l0. The comparison between figures 11 and 14 shows that the coherent energy is
maximum at the location where it is produced. Thus, a simple eddy viscosity model
(e.g. equation (1)) should be able to describe the coherent energy distribution in the
wake flow.

Evidently, the coherent structure extracts energy from the mean flow via stretching
in the mixing jet region, between the two ‘legs’ of the ring. Vortex stretching by the
mean flow is an effective method for the transfer of energy from the mean field to
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Figure 16. Ensemble average of the production of incoherent energy by the coherent motions, 〈Pr〉
(see equation (22)), in (a) the (X∗, Z∗)-plane at Y ∗ = 1.0 and (b) the (X∗, Y ∗)-plane at Z∗ = −0.14.
(c) Ensemble average of the production of incoherent energy (equation (21) + equation (22)) in the
(X∗, Y ∗)-plane at Z∗ = −0.14 using the double decomposition. The contour levels are multiplied by
100.

the coherent field since the coherent vorticity is roughly aligned with the mean rate
of strain. Because the vortex is inclined in the streamwise direction, vortex stretching
by the mean strain works to maintain the correlation between 〈u∗〉 and 〈v∗〉. Because
of the shape of the vortex, namely a ring as opposed to a single roller, 〈u∗〉, 〈v∗〉 and
〈u∗〉〈v∗〉 must be largest near the symmetry plane of the vortex (i.e. in the mixing jet
region). 〈Sc〉 is also largest in this region.

The shear production of small-scale turbulence energy by the mean velocity field
(equation (21)), depicted in figure 15, has a relative deficit at the saddle point (i.e.
upstream of the structure) and is largest at about Y ∗ = 1.0, away from the symmetry
plane of the structure but between the two foci of the double roller motions. Therefore,
the production is, in this case, largest outside the mixing jet region but still between
the two foci observed in the horizontal plane. Thus, the incoherent and coherent
motions extract energy from the mean flow at different locations with respect to the
structure. The peak value of 〈Sr〉 in figure 15 is about 70% of that for 〈Sc〉 in figure 14,
but is spread over a larger area. Certainly the total production of each term is of the
same order of magnitude.

Figure 16 shows the contours of the production of the small-scale energy by the



328 A. Vernet, G. A. Kopp, J. A. Ferré and F. Giralt

coherent motions (Hussain 1983),

〈Pr〉 = −〈u∗2r 〉∂〈u
∗〉

∂X∗
− 〈v∗2r 〉∂〈v

∗〉
∂Y ∗

− 〈w∗2r 〉∂〈w
∗〉

∂Z∗

−〈u∗r v∗r 〉
(
∂〈v∗〉
∂X∗

+
∂〈u∗〉
∂Y ∗

)
− 〈u∗rw∗r 〉

(
∂〈u∗〉
∂Z∗

+
∂〈w∗〉
∂X∗

)
, (22)

where we have neglected the term involving 〈v∗r w∗r 〉 because no simultaneous lateral
and spanwise velocity measurements have been made in the present study. It is
suspected that this term is quite small because the coherent strain rate ∂〈w∗〉/∂y∗ +
∂〈v∗〉/∂z∗ is also small.

The contours of 〈Pr〉 in figure 16 are well-organized and less randomized than the
production of small-scale energy by the mean field, 〈Sr〉 (figure 15), even though both
terms involve similar small-scale stresses. It is observed that in the vertical plane 〈Pr〉
is largest near the saddle point at the upstream end of the mixing jet region but
upstream of the coherent vortex, consistent with the results of Antonia et al. (1987).
The peak values occur near (2.5, 0.7, 0) and are equal in magnitude to those for the
other production terms (equations (20) and (21) in figures 14 and 15). The production
drops abruptly to zero at the saddle point and is shear-aligned below it. Peak values
occur in the symmetry plane.

It is also interesting to note that negative production occurs in the mixing jet
region where the incoherent streamwise stress, 〈u∗2r 〉 (figure 12a), is maximum as is the
incoherent turbulence kinetic energy. Clearly, incoherent turbulence is produced in a
different region from where it occurs, indicating that simple eddy viscosity or local
models such as equation (1) will not work well for the prediction of the incoherent
turbulence terms in the transport equations.

This negative production of incoherent turbulence appears to be due to newly
engulfed fluid moving inwards from the spanwise edges of the structure. In this
way, the engulfed/entrained fluid contributes to the maintenance of the coherent
structures. This should not be mistaken for energy transfer from the fine scales to the
large scales, but should rather be viewed as an effect of the bulk (coherent) motions.
In this case it means a transfer from the incoherent to coherent turbulence. This
would be consistent with the view of negative production put forward by Beguier
et al. (1977). Finally, this negative production also means that there is little direct
transfer between the coherent and incoherent turbulent motions.

Figure 16(c) shows the total production of incoherent energy when a double
decomposition is applied. This figure is shown for comparison with the results of
Antonia et al. (1987). The contours are in close agreement indicating that the structures
identified are similar. Note that in the present work more terms are included (equation
(22)) because the date are three-dimensional.

Figure 17 depicts the ensemble average of the one-component energy dissipation
rate

ε =

〈(
∂u∗r
∂X∗

)2
〉
. (23)

The contours in the vertical symmetry plane are similar to those of Antonia et
al. (1987), although the peak magnitude obtained here is more than one order of
magnitude larger due to differences in the frequencies of the low-pass filter and
sampling rates used (Vernet 1997). It is observed that the peak values are downstream
of the saddle within the mixing jet region. Thus, production and dissipation of the
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Figure 17. One-component dissipation, 〈(∂u∗/∂X∗)2〉, in (a) the (X∗, Z∗)-plane at
Y ∗ = 1.0 and (b) the (X∗, Y ∗)-plane at Z∗ = −0.14.

small scales both occur in the mixing jet region but the largest values of dissipation
occur just between the positive and negative production shown in figure 16 at what
is the upstream edge of the structure.

6.4. Entrainment

Townsend (1976) proposed a ‘growth–decay’ cycle of entrainment for plane turbu-
lent wakes. Groups of entrainment eddies, which grow out of the main turbulent
motion, cause large bulges and indentations of the initially quiescent turbulent–non-
turbulent interface to grow. The bulges finally overturn causing large-scale engulfment.
Townsend differentiates the eddies of the main turbulent motion, which are double
rollers, from the entrainment eddies, which have spanwise vorticity. The present work
suggests that the entrainment eddies and double rollers are different aspects of the
ring-like vortex structure.

The strong outward lateral velocities that exist in the centre of the ring in the
mixing jet region cause the bulges to grow. The indentations are accentuated by the
inward velocities upstream of the ring-like vortex, just upstream of the saddle point.
Coherent and incoherent turbulence is produced in the mixing jet region, between the
two foci of the double rollers. This fine-scale turbulence is ejected outwards toward
the edge of the wake. It should be noted that the indentations do not extend down
to the saddle point which is embedded in the turbulent flow since the intermittency
factor is near unity at Y ∗ = 1.

Antonia et al. (1987) pointed out that the incoherent motions (or stresses) do not
concentrate in the foci of the vortex structures in the far wake, unlike in the near-
wake region. From the present results, it seems likely that the incoherent turbulence
produced within the mixing jet region does not have time to be transported into the
focus at the top of the ring structure. For example, from figure 3 it is estimated that
for a fluid particle within the mixing jet region to move to the vortex centre requires
a path of approximately 3l0. Using the largest ensemble-averaged velocity fluctuation
identified, it would take a particle more than 800 ms to move 3l0. During this time
the entire structure would have been convected more than 500D downstream. The
structure certainly would have evolved in this time. Thus, it seems more reasonable
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that the incoherent turbulence is ejected outwards, to the edge of the wake, as part
of the growth–decay cycle.

7. Conclusions
The average three-dimensional structure of the velocity fluctuations, obtained by

identifying temperature transitions in the (X∗, Z∗)-plane at Y ∗ = 1.0, is a shear-
aligned ring-shaped vortex. This vortex structure is characterized by strong outward
v- and negative u-velocity fluctuations in its centreplane region and by an upstream
saddle point. Grant’s mixing jet occurs between the two foci of the double rollers as
part of the ring. The mixing jet extends outside the vortex, however, all the way to
the upstream saddle point. When a double decomposition is used, the prototypical
coherent structure is found to be a tube-shaped vortex with a spanwise extent of
about 2.5l0.

The turbulence kinetic energy, production by coherent motions, production by the
mean field and the (one-component) dissipation rate are highly three-dimensional
processes which occur primarily within the mixing jet region. These processes do not
completely overlap, however.

The bulk of the turbulence kinetic energy of the ring vortex is associated with
the incoherent velocity fluctuations. It is, however, the coherent field which organizes
the incoherent turbulence. The production of small-scale energy by the coherent
motions and the one-component energy dissipation rate both occur near the saddle
point located at the upstream end of the mixing jet outside the structure boundary
while the production of incoherent energy by the mean field occurs slightly further
downstream and outside the mixing jet but between the two foci of the double
rollers. There is negative production of incoherent turbulence at the downstream end
of the mixing jet region which is likely to be due to the bulk convective motions
of the coherent structure. This should not be regarded as a transfer from the fine
scales to the large scales. Thus, the momentum transfer processes do not overlap
and the peak levels of incoherent energy are separated in space from the regions
where it is produced. The coherent structure also extracts enrgy from the mean flow
within the mixing jet region. The spanwise extent of all these processes is about
l0.

Two-equation turbulence models tend to work well in free shear flows such as
plane turbulent wakes in spite of the relative complexity of the transfer processes
observed in this ‘simple’ flow. This complexity includes the fact that the incoherent
turbulence (i) does not exist in the same region as it is produced and (ii) contributes
to the production of coherent turbulence. The reason why these models function well
in simpler flows may be because there is very little net transfer between the coherent
and incoherent motions, leaving primarily transfer from the mean flow. In the far
region of a plane turbulent wake, this occurs over a single length scale. It seems
likely that when a significant strain is placed on a flow such as a turbulent wake,
the relative magnitudes of turbulence production are shifted, owing to the structural
changes which occur (e.g. Kopp & Keffer 1996). In this case there will be different net
transfer between the mean flow and the coherent and incoherent motions. In these
situations the turbulence models tend to fail.
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Appendix. Template dependence of ensemble averages
An additional analysis of the data was done using two alternative templates,

namely a colder-to-hotter template and a colder-hotter-colder template. This analysis
was performed in order to check if the velocity field results obtained with the hotter-to-
colder template are template dependent or whether they represent different motions.
Figure 18(a) shows the colder-to-hotter template while figure 19(a) shows the colder-
hotter-colder template. From the 72 files analysed an average of 574 temperature
events were selected, accounting for 40% of the recorded data when figure 18(a)
was used and an average of 414 temperature events when figure 19(a) was used.
The standard deviation of the number of temperature events selected is 44 and 23,
while the mean and standard deviation of temperature maxima are 1.54 and 0.04
and 1.49 and 0.01, respectively. This compares favourably to the values presented
in the main body of the text where 592 events, with a standard deviation of 32
events, were identified. These had a mean value of the maximum temperature of 1.51
with a standard deviation of 0.08. Thus, approximately the same number of events
is selected with all three templates. However, the resulting averaged temperature
patterns, shown in figures 18(b) and 19(b) (cf. figure 2b), are significantly different in
all three cases.

The coherent velocities are depicted in figures 18(c, d) and 19(c, d) and vorticity
contours in figures 18(e–g) and 19(e–g). These should be compared with those in
figures 3 and 6. In spite of the strong template dependence of the temperature
averages, the velocity patterns are essentially the same in appearance, but with some
differences in the precise details.

The first impression when looking at the results is that the basic patterns are the
same, but are just shifted within the windows. This first impression is accurate, but
there are some differences. First, the size of the patterns is largest in the colder-
hotter-colder pattern. In fact, the final temperature pattern is essentially just a
hotter spot of larger scale than the two other ‘gradient’ templates where the original
temperature transitions remained intact. Although one would expect a colder-hotter-
colder template to be more constraining than either the hotter-to-colder or colder-to-
hotter templates, the converged pattern is less restrictive and probably has much more
smearing associated with it, judging by the larger size of the patterns. This implies
that the spacing between structures, when they occur in groups (e.g. those identified
by Antonia et al. 1987), varies from group to group so that when a prescribed spacing
is not set, only the hotter pattern associated with the mixing jet region of the coherent
structure is finally identified with the pattern recognition technique.

A second observation is that the upstream or downstream saddle point is more
clearly defined depending on which of the two gradient-type templates is chosen. This
makes sense because the hotter fluctuations are correlated with negative streamwise
velocity fluctuations while the colder fluctuations are correlated with positive velocity
fluctuations. Thus, where there are temperature ‘fronts’ there is a high probability of
a saddle point. (However, a saddle point is not always observed; see for example,
Kopp et al. 1997.) When the different templates are used, different temperature fronts
are selected for averaging so that slightly different velocity patterns are obtained.

Figures 18(h, i) and 19(h, i) show the incoherent energy production by the coherent
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Figure 18 (a–d). For caption see facing page.
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Figure 18. (a) Colder-to-hotter temperature template, and ensemble averages of (b) 〈θ∗〉 in the
(X∗, Z∗)-plane at Y ∗ = 1.0, (c) (〈u∗〉, 〈w∗〉) in the (X∗, Z∗)-plane at Y ∗ = 1.0, (d) (〈u∗〉, 〈v∗〉) in
the (X∗, Y ∗)-plane at Z∗ = −0.14, (e) 〈ωy〉 in the (X∗, Z∗)-plane at Y ∗ = 1.0, (f) 〈ωz〉 in the
(X∗, Y ∗)-plane at Z∗ = −0.14, (g) 〈ωx〉 in the (Y ∗, Z∗)-plane at X∗ = 2.1 and the ensemble average
of the production of incoherent energy by the coherent motions, 〈Pr〉 (multiplied by 100), in (h) the
(X∗, Z∗)-plane at Y ∗ = 1.0 and (i) the (X∗, Y ∗)-plane at Z∗ = −0.14.

motions (using the triple decomposition). These can be compared with figure 16.
Clearly, the three patterns obtained from the three templates show the same topology.
Most of the production occurs at the upstream end of the mixing jet region. There-
fore, the production occurs physically closest to the location of the hotter-to-colder
temperature transition and the ‘upstream’ saddle point, as observed in figures 3, 6 and
16. The other contours occupy slightly more space, possibly indicating more smearing
in the averages. The peak values are similar, however.
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Figure 19 (a–d). For caption see facing page.
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Figure 19. As figure 18 but for the colder-hotter-colder template; and in (g) X∗ = 2.4.

In summary, the ensemble-averaged structures obtained by using a hotter-to-colder
template and a colder-to-hotter template are nearly the same. There are some features
within the ensemble averages which depend on template, in particular the upstream
and downstream saddle points. Results based on the hotter-to-colder template have
been chosen for the main body of the paper because much of the physics of mo-
mentum transfer occurs closest to the colder-to-hotter temperature transition and the
coincident saddle point. A colder-hotter-colder template is not able to identify the
upstream and downstream saddle points simultaneously because of variable spacing
between adjacent structures.
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